

Monitoring Asset Integrity Using Installed Ultrasonic Sensors

May 25, 2016

Sensor Networks, Inc. Steve Strachan V.P. – Sales North America

Outline

- Motivation
- Inspection vs. monitoring/trending
- Power of Data through Continuous Monitoring & Trending
- Applications
- Case Studies

Corrosion Damage Accounts for the Cost of one Major Facility Annually

Pipeline , Oil/Gas
 Production \$8 B

- * NACE Cost of Corrosion Study

Data Monitoring Evolution

Data-to-Desk & The Internet of Things (IoT)

Remote sensors leverage low-cost ubiquitous communication infrastructure

- Modbus / RS-485
- Cellular
- Satellite
- The Internet
- WiFi
- Etc.

24/7 asset health monitoring Data to desk to decision in minutes Mobile access by multiple parties

Structural Health Monitoring Meets NDT

Metrology

Condition Monitoring

Process Control

Materials Analysis

Time-Based Maintenance vs. Predictive Maintenance

Why Installed Sensors for ID Corrosion Monitoring?

Costs (\$) associated with manual inspections

- Pre-inspection activities:
 - Excavation
 - Insulation preparation
 - Surface Preparation
 - \circ Scaffolding
 - Rope access
- Access, permitting, approvals
- Personnel cost technicians, equipment, training, etc.
- Cost per point is less for applications than manual data collection

Costs (other)

- Safety ropes, ladders, radiation, non-invasive, etc.
- Damages environmental, reputation,
- Time/productivity short & long term decision making/planning
- Data quality transcription errors, precision & repeatability

The Inspection/Monitoring Pyramid

Cost vs. Necessity

– WHERE would I want to put an installed sensor and WHY?

Most expensive/critical areas to inspect (circa 2005)

Moderately expensive/critical areas to inspect (circa 2010)

Least expensive/critical areas to inspect (circa 2017 and beyond)

Data Quality Enhanced Using Installed Sensor Systems

Precision

Accuracy

Resolution

Operator variability Transducer placement variability Transducer coupling variability Sound velocity uniformity Measurement Precision

6 picosecond resolution
 Temperature Compensation
 Accurate Corrosion Rates
 Data Accessibility

The Power of Data ...

Wall Thickness Data (1 msmt per year)

- Sufficient for inspection probably NOT for monitoring
 - 1/1/2013 inspection = 10.00mm
 - 12/30/2013 inspection = 9.79mm
- Gross corrosion rate cannot calculate, not enough information

The Power of Data (ctd) ...

Wall Thickness Data (1 msmt per month)

- Various corrosion rates evident
- Trends evident but still large uncertainty due to measurement precision
- Summary better!

The Power of Data (ctd) ...

Wall Thickness Data (1 msmt per week)

- Various corrosion rates evident
- Regression can be used to obtain accurate corrosion rates over medium time scales.

The Power of Data (ctd) ...

Wall Thickness Data (1 msmt per day)

- Various corrosion rates evident
- Regression can be used to remove measurement noise and produce very accurate corrosion rate data
- GREAT!

Corrosion Rate Measurement

- Corrosion Rates(CR) used for maintenance & process.
- Monitoring enables accurate(CR).
- CR Precision enhanced by linear regression.
- Factors:
 - Standard deviation of the measurement system
 - Measurement frequency
 - Measurement interval

Linear Regression of Thickness Data
10.15
10.05
10.05
10.05

$$y = -0.0005x + 10.103$$

 $y = -0.0005x + 10.103$
Days

$$s_m^2 = \frac{\frac{1}{n-2} \sum_{i=1}^n (y_i - Y(x_i))^2}{\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}$$

95% C.I. \approx m \pm 2s_m (n-2 \ge 6)

Data-to-Desk & The Internet of Things (IoT)

- Data available across the organization – remote viewing for critical decision making
- Archiving & record retention simplicity
- Alarms & Warnings
- Saving raw data: RF Signal
- Google Maps & GPS

Typical Applications

Downstream	Midstream	Upstream
Replacement of invasive	Post repair or	Wellhead monitoring for
technologies – ER	replacement baseline of	initial start-up &
probes/coupons	new infrastructure	injection/storage
Process control for	Monitoring of	High pressure pumping
chemical inhibitor	known/existing localized	instrumentation health
optimization	corrosion events	monitoring
High Temp Naphthenic acid monitoring	Used in lieu of pigging/ILI for river/road crossings or 49 CRF 192 & 195	Sand erosion/wash-out for offshore platforms & FPSOs

UT Sensor Case Studies – Oil & Gas

Process Control

- Corrosion RATE
 monitoring
- Chemical inhibitor injection mgmt.
- Different crude TAN rates require more/less chemical to reduce exposure to wall loss
- Temporary UT wireless sensors placed in misc. areas (1 reading per hour for 3 months)
- Reduction in chemical inhibitor spend varying based on crude slate (in this instance is estimated to be ~\$20K/wk.)

Inspection

- Localized corrosion monitoring
- Gas spheres
- "underbelly" pitting/corrosion
- Inspection crews sent bi-weekly to inspect known areas on 4 spheres
- Cost \$25K each time
- Manual UT gauges marked "low" spots, tethered UT sensors placed (3 readings per wk. using tablet)
- Saved >\$150K in first 3 months of program

Re-Engineering

- TML reduction programs
- Cellular UT sensors in lieu of manual inspection (2 readings per month)
- <1 mil/yr. for +5 yrs.
- 27,000+ TML locations, cost >\$3M to inspect 1/3 per year
- Were able to reduce from 27,000 TML points to 13,000 TMLs
- Saving ~\$1.7M/yr in manual inspection cost

UT Sensor Case Studies – Power Gen.

Transmission

- Regulation driven
- Buried river & road crossings
- UT sensors placed on defined areas tethered/manual collection
- Junction boxes placed 100' from road tethered UT sensors installed (1 reading per qtr.)
- Savings in government fines

Storage

- Buried high pressure storage lines
- Installed tethered/manual UT sensors on new (replaced) segments of pipe where corrosion had previously been found (2-3 readings per yr. or as necessary via tablet)
- Savings from avoiding unplanned outages

Inspection

- Ongoing projects & evaluation ...
- FAC programs
 - Corrosion rate R&D
- MIC programs
 - Installed sensors in lieu of manual inspections for known pitting between outages
- High-point vent
 - Installed sensors in lieu of manual inspection to detect gas voids
 - EHS avoid radiation areas where possible

Summary & Q/A

The digital world is changing quickly ... use it to your advantage

Installed sensors can be used to optimize safety & asset integrity for inspection as well as monitoring for corrosion/erosion & cracks

The **power of data** ... predictive uptime, real-time asset health monitoring, reduced unplanned outages

Applications for installed sensors exist everywhere, know your short- and long-term goals for any project/program

Sensor Networks, Inc.

Steve Strachan V.P. Sales – North America <u>Strachan@installedsensors.com</u>

www.installedsensors.com